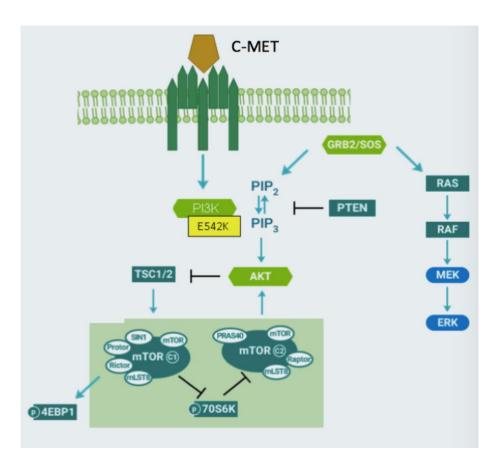
c-MET as a Potential Resistance Mechanism to Everolimus in Breast Cancer: From a Case Report to Patient Cohort Analysis

Van den bossche Valentin, Jadot Gaspard, Grisay Guillaume, Pierrard Julien, Honoré Natasha, Seront Emmanuel

V. Van den bossche, MD, PhD student UCLouvain, SSS/IREC/FATH

BSMO meeting, Ghent, 14/02/20


• No disclosure

Background

- Endocrine therapy is the key treatment in HR (+) Breast Cancer
 - → First line setting in mBC includes ET + CDK4/6 inhibitor
- The PI3K/Akt/mTOR pathway is activated in >50% of mBC
 - → Everolimus is used in combination with ET
 - → Primary or secondary resistance to everolimus is common
- c-MET is a tyrosine kinase receptor associated

with agressiveness of cancer and poor prognosis

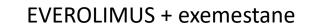
• Association between c-MET expression and resistance to everolimus ?

Starting from a clinical case :

a highly sensitive patient to everolimus

Case-report : mBC in a 69-yo woman

1998: locally advanced breast cancer treated with surgery, chemotherapy (6FEC), RT and tamoxifen 5 y


2012: resurgence with lung metastases.

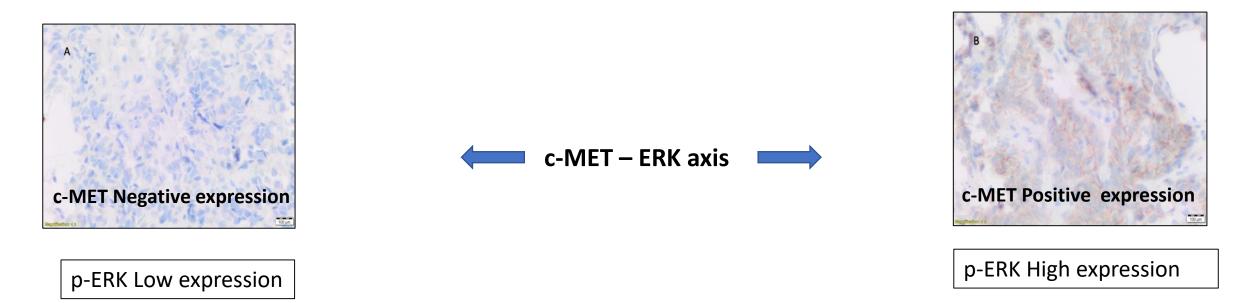
Ductal Carcinoma ER 7/8, PR 0/8

HER2 0

KI67 70%

→ Letrozole

Progression-free survival (PFS) = 17 months Best response rate : 75% decrease of lesions


EVEROLIMUS + EXEMESTANE

Biopsy 1 = Before everolimus

Biopsy 2 = at progression

PIK3CA E542K \rightarrow could explain the sensitivity to everolimus

p-4EBP1 +++ \rightarrow could explain the sensitivity to everolimus

At progression on everolimus, different regimens were tested (taxane, capecitabine)

Due to c-MET and p-ERK expression

-> cabozantinib = tyrosine kinase inhibitor

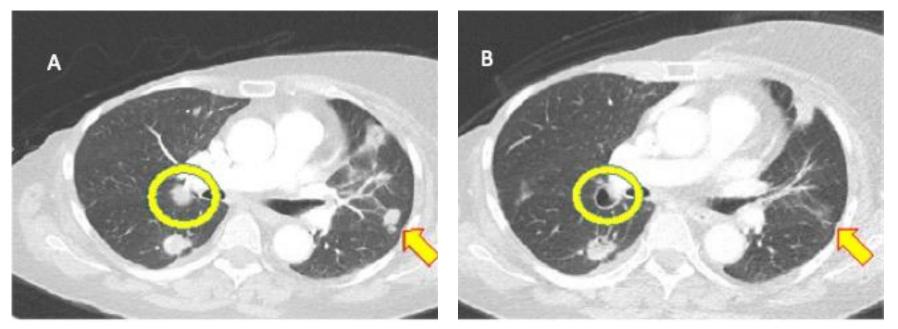


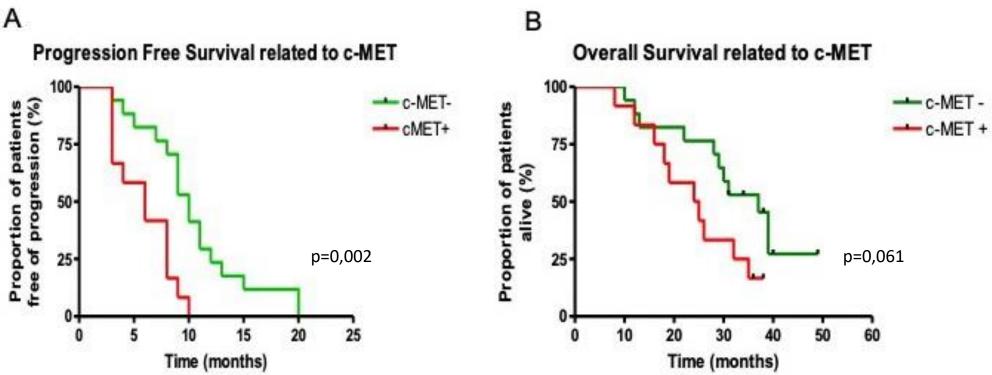
Fig. 3 : Chest tomography (A) before and (B) at 1 month of cabozantinib initiation

PFS of 7 months

Analyzing a patients cohort:

A link between c-MET and Everolimus efficacy ?

Materials and methods :


- Retrospective analysis of a cohort of postmenopausal mBC patients treated with everolimus 10mg daily + exemestane as 2nd line ET in Jolimont between 2012 and 2017
- All mBC with ER and/or PR, previous ET line, none had received CDK4/6 inhibitors
- Available biopsy performed within 12 months before everolimus initiation
- c-MET expression assessed by IHC : positive if ≥ 50% of tumor cells with moderate/high membranous staining
- Response rate, progression-free survival (PFS) and overall survival (OS)

Results : Demographic and tumor characteristics of the patient cohort

Characteristics	c-MET positive $(n = 12)$	c-MET negative $(n=17)$
Median age, years (range)	59 (33–78)	60 (40–76)
Ethnicity, Caucasian, n (%)	12 (100)	17 (100)
Ductal carcinoma, n (%)	9 (75)	11 (65)
Lobular carcinoma, n (%)	3 (25)	6 (35)
Grade in metastatic setting, n (%)		
1	0 (0)	2 (12)
2	7 (59)	11 (65)
3	5 (41)	4 (23)
De novo metastatic, n (%)	3 (25)	3 (17)
Previous chemotherapy, n (%)		
Adjuvant/neoadjuvant only	5 (42)	6 (35)
Treatment of metastatic disease (with or without adjuvant/neoadjuvant), n (%)	3 (25)	3 (17)
Previous endocrine therapy, n (%)		
Adjuvant	9 (75)	14 (82)
Metastatic disease Previous therapies (including those used in adjuvant or metastatic setting), n (%)	12 (100)	17 (100)
1	1 (8)	2 (12)
2	5 (42)	9 (53)
3 or more	6 (50)	6 (35)
Endocrine therapy sensitivity, n (%)	7 (59)	14 (82)
Metastases location at initiation of everolimus, n (%)		
Visceral metastasis only	4 (33)	4 (24)
Bone metastases/lymph nodes	4 (33)	8 (48)
Visceral + bone metastases/lymph nodes	4 (33)	5 (29)
Measurable disease, n (%)	10 (83)	15 (88)
Phospho-c-MET positive, n (%)	8/10 (80) 2 pts not evaluable	0/14 (0) 3 pts not evaluabl

ET sensitivity : ≥ 24 weeks of response or disease stabilization

	c-MET +	c-MET -	p-value
mPFS (months)	6,1	10,5	0,002
OS (months)	24,5	37	0,061

Limitations

- Retrospective analysis with limited number of patients
- Before the era of CDK4/6 inhibitors ! (although not pointless)
- No validated assay for c-MET and phospho-c-MET evaluation

Conclusions & perspectives

- TK receptor c-MET could be associated with cancer progression and resistance to everolimus.
- It opens the era of targeted therapy in breast cancer
- Need for prospective and randomized trials