Tumor transition states occuring during EMT

Ievgenia Pastushenko, MD, PhD Laboratory of stem cells and cancer – Cedric Blanpain Lab Dermatology Department, CHU Brugmann

Tumor heterogeneity

Marusyk A et al. Nat Rev Cancer 2012

Implication of EMT for tumor heterogeneity and metastasis

De Craene & Berx, Nat Rev Cancer 2013

Squamous cell carcinoma

- 2nd most frequent cancer
- 500.000 patients /year in US
- Surgical excision
- 5% with metastasis leading to poor survival prognosis

Mutations of the Ras pathway in mice and human SCC

⇒Hras (Kamino et al., 1991, Corominas et al., 1989, Nassar et al. Nature Medicine 2015)

⇒Kras (Spencer et al., 1995; Sutter et al., 1993; van der Schroeff et al., 1990, Nassar et al. Nature Medicine 2015)

 \Rightarrow RRas2 (Nassar et al. Nature Medicine 2015)

Genetic lineage tracing in mouse model of skin SCC that undergo spontaneous EMT

Latil et al, Cell Stem Cell 2017

Loss of Epcam expression during EMT

Does EMT occur through distinct transitional states ?

Nieto et al. Cell 2016

Identification of the tumor transition states occuring during EMT in vivo

Identification of cell surface markers heterogenously expressed during EMT in vivo

Identification of the tumor transition states occuring during EMT in vivo

Uncovering the order of transition during EMT

EMT transition states revealed by tumor by single cell RNA-seq

Metaplastic mammary tumors progress through the same EMT transition states

EMT transition states in MMTV-PyMT mammary tumors

EMT transition states in human cancer

EMT transition states present similar TPC capacity but exhibit different plasticity

Number of grafted cells	Ep+	Ep-	TN	CD106	CD51	CD106/51	CD51/61	ТР
1000	7/9 (n=3)	10/12 (n=3)	9/12 (n=2)	15/17 (n=2)	12/15 (n=3)	6/6 (n=2)	14/18 (n=3)	10/12 (n=2)
100	1/9 (n=3)	15/18 (n=4)	23/24 (n=4)	17/24 (n=4)	3/3 (n=3)	13/18 (n=3)	19/24 (n=3)	13/17 (n=4)
10	1/9 (n=3)	18/24 (n=3)	7/30 (n=4)	21/46 (n=4)	14/19 (n=3)	6/18 (n=3)	14/30 (n=3)	12/21 (n=3)
TPC frequency	1/614 (1/1266-1/297)	1/93 (1/159-1/54)	1/146 (1/246-1/86)	1/99 (1/156-1/63)	1/130 (1/246-1/68)	1/59 (1/99-1/35)	1/168 (1/285-1/99)	1/124 (1/226-1/69)
n = 0.004 - 3.35 = -0.8					p=0.001			

Different EMT transition states present different metastatic potential

Transcriptional landscape of EMT transition states

Uncovering transcription factors operating during EMT at each transition states

TGFb/Smad2 inhibition accelerates tumorigenesis and blocks EMT progression

p63 overexpression blocks late steps of EMT progression

Different EMT transition states are localized in different niches

Different EMT niches are associated with different immune and vascular infiltration

Macrophages regulate EMT transition states

Transition through the different EMT states

	Epcam+	TN p6 K Grl 2 f 1 Nfate	CD106 CD106 Lh If bHI hl2 Zel Ovol2 Smac Sp1 Nfate	CD51 CD106/51 x2 LH bHLI b1 Maffe d2/3 Rbpj /Sp1 Smad2	CD51/61 TP
	Epithelial Tumor cells	Early Hybrid EMT state	Hybrid EMT state	Late Hybrid EMT state	Mesenchymal Tumor cells
Proliferation	++++	++	++	++	+
Invasion	+	++	+++	++++	+++++
Plasticity	+	++	+++	++++	++
Stemness	+	+++	+++	+++	+++
Metastasis	+	++++	++++	++	+

- EMT occurs through distinct transition states
- Early hybrid EMT exhibit the highest metastatic capacity
- Different transition states are associated with different microenvironment
- Depletion of macrophages prevents progression towards complete EMT

Role of Netrin-1 in EMT

Netrin-1 inhibition reverts EMT upon subcutaneous grafting of Epcam- tumor cells

Netrin-1 inhibition reduces tumorigenesis and prevents EMT in primary skin SCC

Netrin-1 inhibition reduces macrophage infiltration in primary skin SCC

Netrin-1 inhibition prevents lung colonization upon intravenous injection of Epcam- TCs

Regulation of EMT and metastasis through modulation of the microenvironment

А	Neutrophils	I	Cancer (VCAM1)
В	DC/Macrophages	J	Melanocytes
С	M2 Macrophages	К	M1 Macrophages
D	T-Cells	L	Osteoclast markers
E	Endothelial	Μ	Cluster 9 macrophages (total)
F	Fibroblasts	Ν	NK
G	Fibroblasts (special)	0	Cluster 16 (total)
Н	Cancer (EPCAM +)		

Pastushenko & Lengrand, unpublished data

Can genetic hints stabilize specific EMT state?

Fat1 mutations in human cancers

Lung SCCs

Pan Cancer

Fat1 deletion promotes hybrid EMT in SCC

Deletion of Fat1 promotes hybrid EMT state in human SCCs

Somatic mutations in Fat1 is associated with hybrid EMT state in human cancers

Fat1 deletion increases lymph node and lung metastasis

Pastushenko et al, under review

- EMT occurs through distinct transition states
- Early hybrid EMT exhibit the highest metastatic capacity
- Different transition states are associated with different microenvironment
- Depletion of macrophages prevents progression towards complete EMT
- Role of microenvironment in the modulation of EMT can be explored as therapeutic opportunity
- Specific mutations can stabilize highly metastatic hybrid EMT state and should be be explored as predictive factor of poor outcome

