molecular profiling of solid tumors and hematological malignancies using targeted sequencing

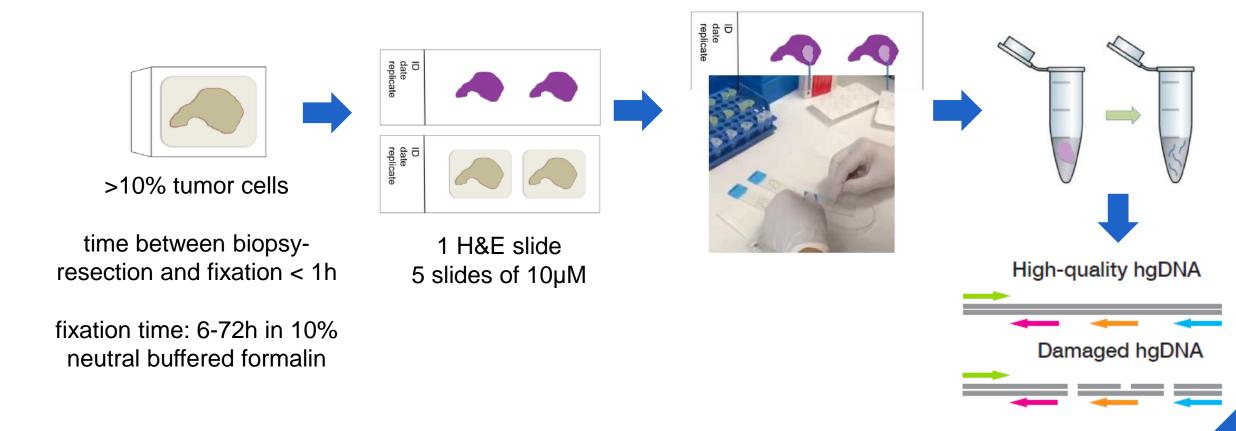
22nd annual BSMO meeting 2020 february 15th 2020

platform molecular diagnostics UZ Gent (MDG)

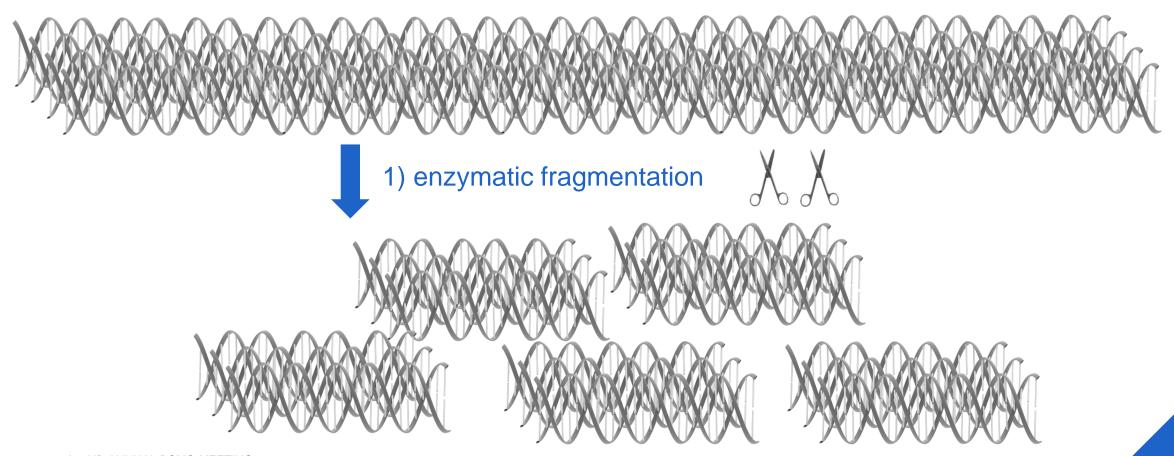
center for medical genetics (CMGG)

targeted next-generation sequencing (NGS) to define diagnosis, prognosis and prediction of therapy response

clinical biology



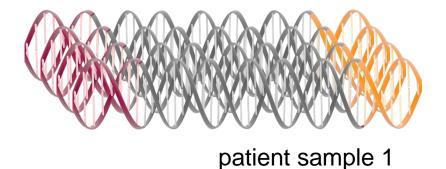
from request till report to the clinici variant interpretation/classification

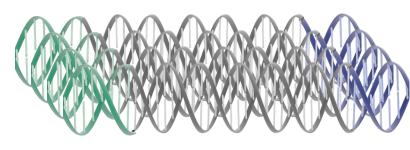

next-generation sequencing workflow

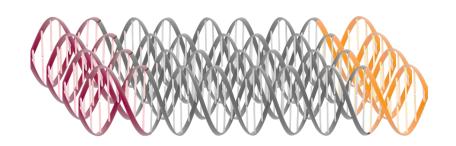
DNA extraction + QC DNA test 1-2 days SeqCap library prep 1,5 days next-generation sequencing 26h-30h/run data-analysis 12h-24h/run 1-3 days/run variant interpretation – reporting

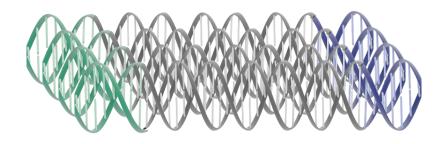
DNA extraction + QC DNA test (solid tumors)

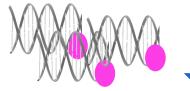
enzymatic fragmentation



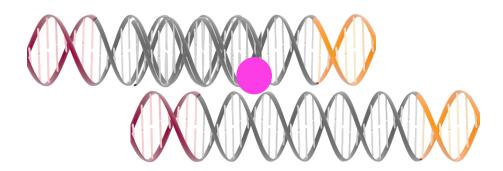

ligation of adapters with unique dual indexes (UDI)

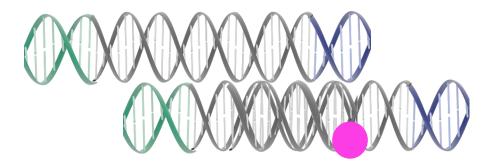

2) ligation of adapters with unique dual indexes (UDI)
*adapters for binding to the flowcell and sequencing of primer sites
* unique dual indexes ≠ for each patient sample



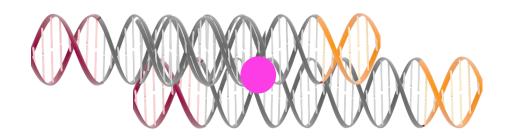


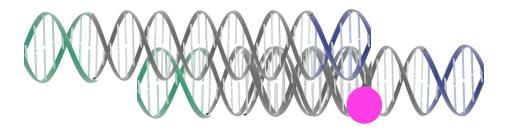
patient sample 2


probe hybridisation



- 3) hybridisation of biotinylated probes for genes of interest
- solid tumor panel (69 genes)
- hemato-onco tumor panel (64 genes)

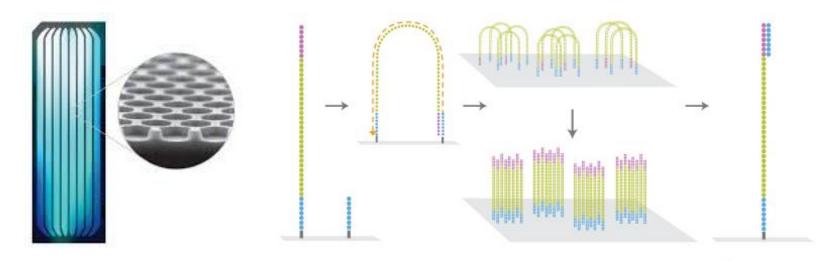


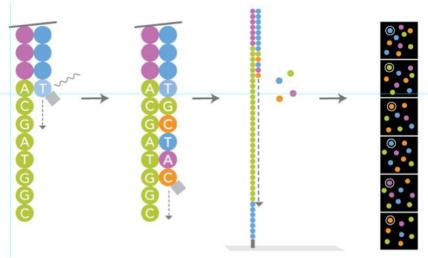

MDG gene panels for solid and hemato-oncological tumors

solid tumor panel (69 genes): AKT1, ALK, APC, AR, BAP1, BRAF, BRCA1, BRCA2, CCND1, CDK4, CDK6, CDKN2A, CDKN2B, CTNNB1, DDR2, DICER1, DPYD, EGFR, ERBB2, ERBB3, ERBB4, ESR1, FBXW7, FGFR1, FGFR2, FGFR3, FOXL2, FRK, GATA3, GNA11, GNAQ, GNAS, H3F3A, H3F3B, HIST1HB3, HIST1H3C, HNF1A, HRAS, IDH1, IDH2, IL6ST, JAK1, JAK2, KIT, KRAS, MAP2K1, MET, NRAS, NTRK1, NTRK3, PDGFRA, PIK3CA, PIK3R1, POLE, PTEN, RB1, RET, RNF43, ROS1, SMAD4, SMARCA4, SMARCB1, SMO, SPOP, STAT3, STK11, TERT, TP53, VHL

hemato-onco tumor panel (64 genes): ANKRD26, ASXL1, ATM, BCL2, BCOR, BCORL1, BIRC3, BRAF, BTK, CALR, CBL, CEBPA, CRLF2, CSF3R, CUX1, DDX41, DNMT3A, EGR2, ETNK1, ETV6, EZH2, FBXW7, FLT3, GATA2, HRAS, IDH1, IDH2, IKZF1, IL7R, JAK2, JAK3, KIT, KRAS, MPL, NF1, NFKBIE, NOTCH1, NPM1, NRAS, PAX5, PHF6, PLCG2, POT1, PPM1D, PTPN11, RAD21, RPS15, RRAS, RUNX1, SETPB1, SF1, SF3B1, SH2B3, SMC1A, SMC3, SRSF2, STAG2, STAT5B, TET2, TP53, U2AF1, WT1, XPO1, ZRSR2

enrichment of DNA fragments with genes of interest


4) purification of biotinylated-probe bound DNA fragments with streptavidin-coated beads + amplification



Illumina sequencing of SeqCap library prep

hybridisation, bridge amplification, cluster generation followed by sequencing-by-synthesis

Illumina sequencing van SeqCap library prep

sequencing instruments @CMGG

MiSeq Illumina up to 15 Gb targeted sequencing

NextSeq 500 Illumina up to 120 Gb small/polyA/total RNA sequencing

NovaSeq Illumina up to 3000 Gb

exome/whole genome sequencing

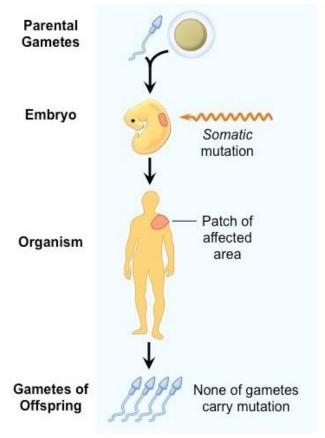
HiSeq 3000 Illumina up to 750 Gb shallow whole genome/NIPT

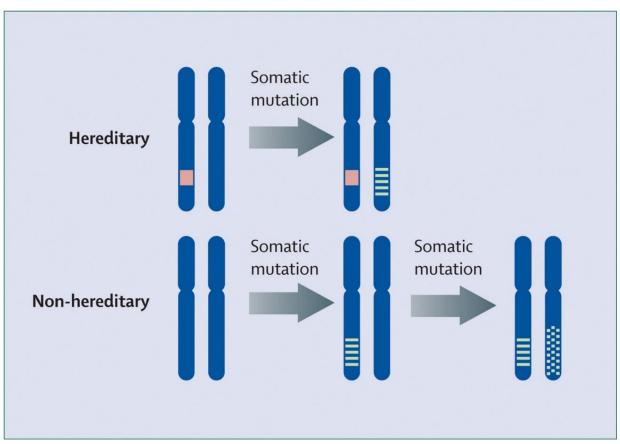
NGS data-analysis

in-house bcbio datamining workflow

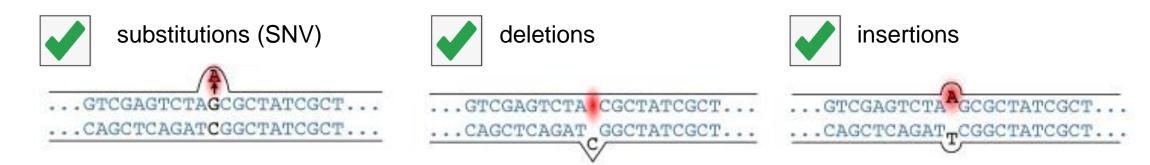
coverage:

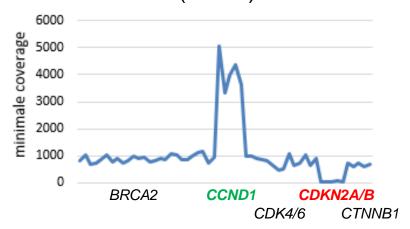
 sequencing depth = amount of unique reads for a specific nucleotide in the sequencing data

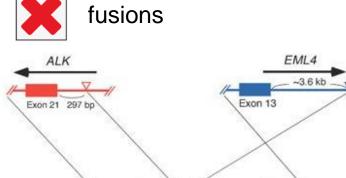

variant calling and reporting:


- ≥ 300X coverage & ≥ 5% VAF
- exception: 2-5% VAF known hotspot variants with variant present in >10 reads

SRSF2 c.284C>A (p.(Pro95His)) 49% VAF


detection of somatic variants with NGS


detection of somatic variants with NGS


substitutions (SNVs), deletions, insertions, copy number variants (CNVs) based on coverage

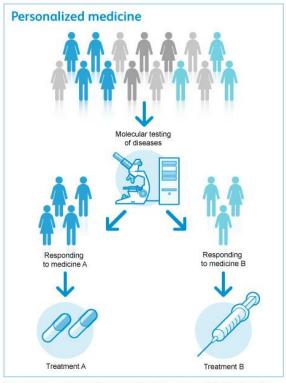
copy number variants (CNVs) based on coverage

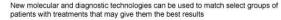
EML4-ALK variant 1

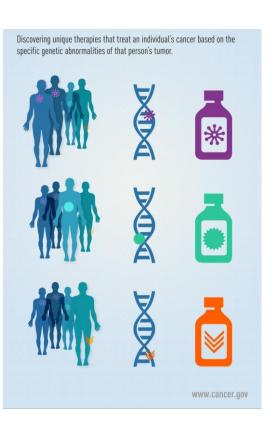
detection of somatic variants with NGS

prediction of therapy response to molecular drugs and immunotherapy

example. high-grade serous ovarian cancer *BRCA1-BRCA2* variants, melanoma *BRAF* variants, ER+ breast cancer *PIK3CA* variants


diagnosis


example. pancreatic cysts: GNAS, KRAS, RNF43, VHL, CTNNB1 variants


prognosis

example. endometrial tumor: *POLE* variants,

glioma: TERT promoter variants

variant interpretation of NGS data

biological classification of somatic variants: 5 classes

Molecular Diagnostics.be + Scienscano: guidelines for harmonisation of variant classification/annotation/reporting

classification based on ACMG/AMP standards & guidelines (Richards et al. Genet Med 2015)

pathogenic example. BRAF c.1799T>A p.(Val600Glu)

likely pathogenic example. PIK3CA c.1357G>C p.(Glu453Gln)

VUS example. ALK c.3513C>G p.(Ile1171Met)

▶ likely benign example. *ALK* c.4796C>A p.(Pro1599His)

benign example. TP53 c.215C>G p.(Pro72Arg)

reporting of pathogenic, likely pathogenic and VUS variants

variant interpretation of NGS data

clinical classification

Tier I: Variants of Tier II: Variants of Tier III: Variants of **Strong Clinical Potential Clinical** Tier IV: Benign or **Unknown Clinical Significance Significance Likely Benign Variants Significance** Therapeutic, prognostic & Therapeutic, prognostic & diagnostic diagnostic **Level A Evidence** FDA-approved therapies FDA-approved therapy for different tumor types Not observed at a or investigational significant allele guidelines Observed at significant frequency in the general Multiple small published allele frequency in the or specific subpopulation studies with some general or specific databases, or pan-cancer subpopulation databases or tumor-specific variant No existing published evidence of cancer No convincing published Level B Evidence evidence of cancer Well-powered studies Preclinical trials or a few experts in the field case reports without

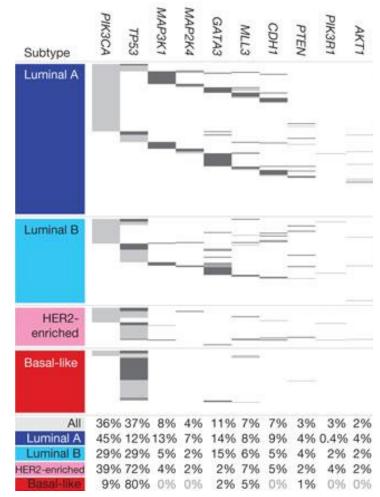
→ recommended: reporting of variants tiers I – III, NOT tier IV

NGS report

solid tumors

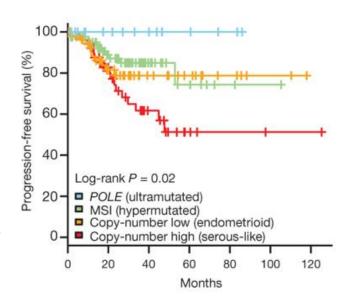
- pathogenic, probably pathogenic variants and variants of unknown significance (VUS) detected in <u>all 69 genes</u> are reported in <u>all solid tumor types</u>
 - BRCA2 pathogenic variant in melanoma: precision2 clinical trials with olaparib @UZGent, germline mutation analysis recommended @CMGG
 - DPYD pathogenic variant in a colorectal tumor: germline mutation analysis recommended @CMGG, toxicity for 5-FU & capecitabine chemotherapy
 - FGFR2 pathogenic variant in an endometrial tumor: FGFRi clinical basket trials @UZGent

reimbursement in Belgium – NGS convention

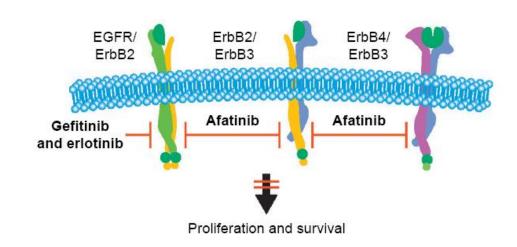

NGS convention – extra fee for NGS tests in selection of solid tumors (350 euro) <> 210 euro

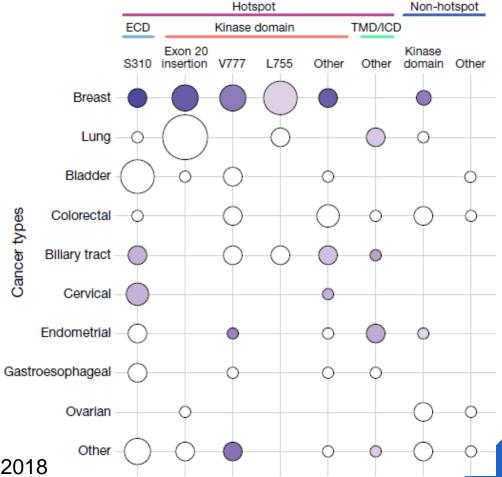
tumor types in NGS convention

- → obligation to test minimal gene list per tumor type with NGS
 - high-grade non-mucinous epithelial ovarian cancer
 - melanoma stage III metastatic lymph nodes / metastatic
 - glioma (IDH1- on IHC)
 - medulloblastoma
 - thyroid carcinoma (bethesda class 3 or 4)
 - metastatic colorectal carcinoma
 - pancreatic carcinoma cysts
 - GIST
 - lung carcinoma (non-squamous carcinoma or squamous carcinoma non/seldom-smoker or progressive under targeted therapy)


patient with metastatic ER+ HER2- breast cancer, 57 years old – tumour sample with 40% TC

- PIK3CA c.3140A>G p.(His1047Arg) 24% VAF: pathogenic variant
- TP53 c.833C>T p.(Pro278Leu) 41% VAF: pathogenic variant
- ▶ BAP1 c.1039C>T p.(His347Tyr) 50% VAF: VUS
- compassionate use programma / clinical study: alpelisib (PIK3CA inhibitor) in combination with fulvestrant/letrozole for PIK3CA mutated ER+ HER2- breast cancer patients


patient with endometrioid endometrial cancer, 51 years old – tumour sample with 80% TC

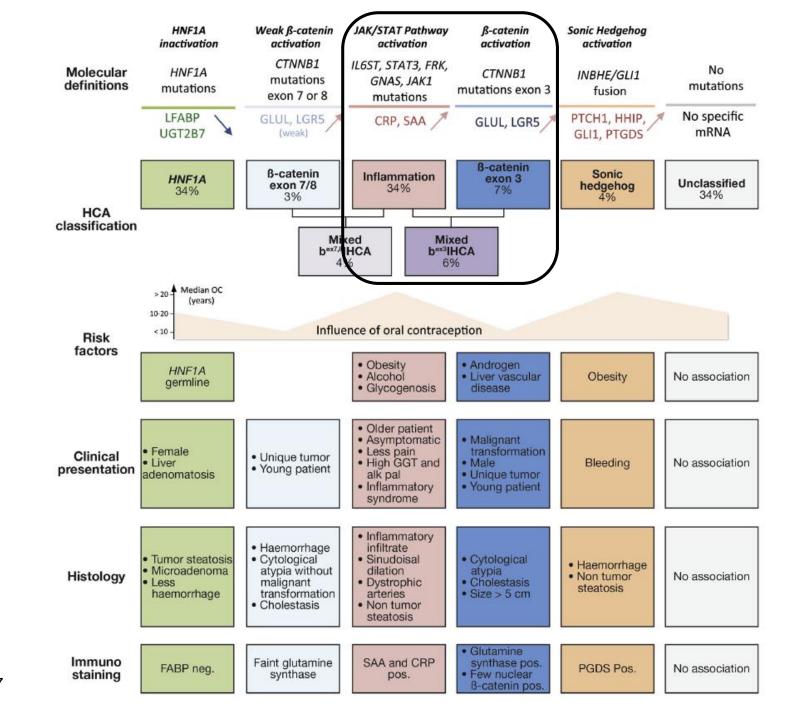

- ▶ POLE c.857C>G p.(Pro286Arg) 40% VAF: pathogenic variant
- ▶ BRCA2 c.7795G>T p.(Glu2599Ter) 42% VAF: pathogenic variant
- ▶ CTNNB1 c.104T>G p.(Ile35Ser) 45% VAF: pathogenic variant
- ▶ PTEN c.19G>T p.(Glu7Ter) 41% VAF: likely pathogenic variant
- ▶ PTEN c.895G>T p.(Glu299Ter) 40% VAF: likely pathogenic variant
- ▶ PIK3R1 c.1042C>T p.(Arg348Ter) 80% VAF: likely pathogenic variant
- ESR1 c.1610A>C p.(Tyr537Ser) 41% VAF: pathogenic variant
 + 22 VUS variants
- ▶ POLE mutated endometrial cancer group are associated with good prognosis

patient with ovarian carcinoma, 43 years old – sample with 50% TC

- ERBB2 c.2314_2325dup p.(Tyr772_Ala775dup) 37% VAF: pathogenic variant
- ▶ PRECISION2 trial: afatinib

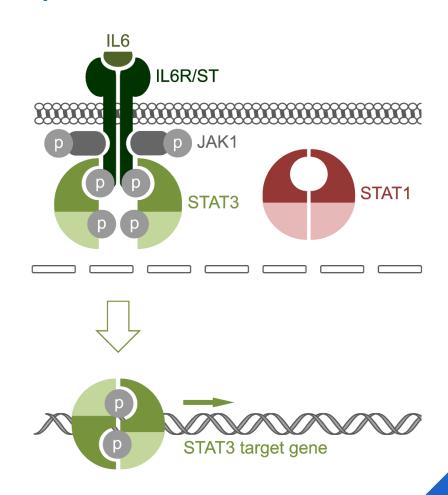
ERBB2 mutations

22 / 22ND ANNUAL BSMO MEETING 2020


Hyman et al. Nature 2018

patient with hepatocellular adenomas, 25 years old – sample with 80% TC

- ► CTNNB1 c.133T>C (p.(Ser45Pro)) 34% VAF: pathogenic variant
- ▶ *IL6ST* c.567_578del (p.(Tyr190_Asn193del)) 21% VAF: pathogenic variant


classification hepatocellular adenoma

→diagnosis: mixed bex3IHCA

patient with hepatocellular adenomas, 25 years old – sample with 80% TC

- CTNNB1 c.133T>C (p.(Ser45Pro)) 34% VAF: pathogenic variant
- IL6ST c.567_578del (p.(Tyr190_Asn193del)) 21% VAF: pathogenic variant
- → diagnosis: mixed bex3IHCA
- → ruxolutinib (JAK1/JAK2 inhibitor): can be efficient in supressing IL6/JAK/STAT pathway activation due to IL6ST mutations (Nault et al. Gastroenterology 2017)

JONI VAN DER MEULEN supervisor MDG, molecular biologist Molecular Diagnostics UZ Gent (MDG) +32 (0)9 332 39 71

Universitair Ziekenhuis Gent
C. Heymanslaan 10 | B 9000 Gent
T +32 (0)9 332 21 11
E info@uzgent.be

www.uzgent.be
Volg ons op

